หน้าที่ของหน่วยความจำหลัก

            หน่วยความจำหลัก มีหน้าที่ ในการเก็บ ข้อมูล และโปรแกรม ที่จะให้ ซีพียู เรียกไป ใช้งานได้ 
หน่วยความจำหลัก เป็นอุปกรณ์ ที่ทำมาจาก ไอซี เช่นเดียวกัน วงจร หน่วยความจำ เก็บข้อมูล ในรูปตัวเลข ฐานสอง ซึ่งก็ คือสัญญาณ ทางไฟฟ้า การเก็บข้อมูล จะเก็บรวมกัน เป็นกลุ่ม เช่น 8 บิต รวมกัน เป็น 1 ไบต์ หน่วยความจำ จะมีที่เก็บได้ เป็นจำนวนมาก เช่นใน เครื่องคอมพิวเตอร์ มี           หน่วย ความจำหลัก 8 เมกะไบต์ หมายถึง สามารถ เก็บข้อมูล หรือคำสั่งได้ 8 x 1024 x 1024 ไบต์ นั่นเอง (ประมาณ 2000 หน้ากระดาษ)
            การเก็บข้อมูล ในหน่วยความจำเก็บ โดยกำหนด ตำแหน่งที่อยู่ข้อมูล (address) ซีพียู จะเขียน หรืออ่านข้อมูล ในหน่วยความจำ ต้องอ้าง ตำแหน่งที่อยู่ โดยปกติ ซีพียู จะอ้างอิง ข้อมูลที่ ตำแหน่งที่ อยู่ใดๆ ได้ทันที การอ้าง ตำแหน่ง ที่อยู่ข้อมูล แบบนี้ เรียกว่า การเข้าถึง โดยสุ่ม (random access)

 

 

คอมพิวเตอร์ทุกเครื่องต้องอาศัยหน่วยความจำหลักเพื่อใช้เก็บข้อมูลและคำสั่งซีพียูมีการทำงานเป็นวงรอบโดยการคำสั่งจากหน่วยความจำหลักมาแปลความหมายแล้วกระทำตาม เมื่อทำเสร็จก็จะนำผลลัพธ์มาเก็บในหน่วยคำจำหลัก ซีพียูจะกระทำตามขั้นตอนเช่นนี้เรื่อย ๆ ไปอย่างรวดเร็ว เรียกการทำงานลักษณะนี้ว่า วงรอบของคำสั่ง
จากการทำงานเป็นวงรอบของซีพียูนี้เอง การอ่างเขียนข้อมูลลงในหน่วยความจำหลักจะต้องทำได้รวดเร็ว เพื่อให้ทันการทำงานของซีพียู โดยปกติถ้าให้ซีพียูทำงานความถี่ของสัญญาณนาฬิกา 33 เมกะเฮิรตซ์ หน่วยความจำหลักที่ใช้ทั่วไปมักจะมีความเร็วไม่ทัน ดังนั้นกลไกของซีพียูจึงต้องชะลอความเร็วลงด้วยการสร้างภาวะรอ (wait state) การเลือกซื้อไมโครคอมพิวเตอร์จึงต้องพิจารณาดูว่ามีภาวะรอในการทำงานด้วยหรือไม่
หน่วยความจำหลักที่ใช้กับไมโครคอมพิวเตอร์จึงต้องกำหนดคุณลักษณะ ในเรื่องช่วงเวลาเข้าถึงข้อมูล (access time) ค่าที่ใช้ทั่วไปอยู่ในช่วงประมาณ 60 นาโนวินาที ถึง 125 นาโนวินาที ( 1 นาโนวินาทีเท่ากับ 10-9 วินาที) แต่อย่างไรก็ตาม มีการพัฒนาให้หน่วยความจำสามารถใช้กับซีพียูที่ทำงานเร็วขนาด 33 เมกะเฮิรตซ์ ได้ โดยการสร้างหน่วยความจำพิเศษมาคั่นกลางไว้ ซึ่งเรียกว่า หน่วยความจำแคช (cache memory) ซึ่งเป็นหน่วยความจำที่เพิ่มเข้ามาเพื่อนำชุดคำสั่ง หรือข้อมูลจากหน่วยความจำหลักมาเก็บไว้ก่อน เพื่อให้ซีพียูเรียกใช้ได้เร็วขึ้น
การแบ่งประเภทหน่วยความจำหลัก ถ้าแบ่งตามลักษณะการเก็บข้อมูล กล่าวคือถ้าเป็นหน่วยความจำที่เก็บข้อมูลไว้แล้ว หากไฟฟ้าดับ คือไม่มีไฟฟ้าจ่ายให้กับวงจรหน่วยความจำ ข้อมูลที่เก็บไว้จะหายไปหมด เรียกหน่วยความจำประเภทนี้ว่า หน่วยความจำแบบลบเลือนได้ (volatile memory) แต่ถ้าหน่วยความจำเก็บข้อมูลได้โดยไม่ขึ้นกับไฟฟ้าที่เลี้ยงวงจร ก็เรียกว่า หน่วยความจำไม่ลบเลือน (nonvolatile memory)
แต่โดยทั่วไปการแบ่งประเภทของหน่วยความจำจะแบ่งตามสภาพการใช้งาน เช่น ถ้าเป็นหน่วยความจำที่เขียนหรืออ่านข้อมูลได้ การเขียนหรืออ่านจะเลือกที่ตำแหน่งใดก็ได้ เราเรียกหน่วยความจำประเภทนี้ว่า แรม (Random Access Memory: RAM) แรมเป็นหน่วยความจำแบบลบเลือนได้ และหากเป็นหน่วยความจำที่ซีพียูอ่านได้อย่างเดียว ไม่สามารถเขียนลงไปได้ ก็เรียกว่า รอม (Read Only Memory : ROM) รอมจึงเป็นหน่วยความจำที่เก็บข้อมูลหรือโปรแกรมไว้ถาวร เช่นเก็บโปรแกรมควบคุมการจัดการพื้นฐานของระบบไมโครคอมพิวเตอร์ (bios) รอมส่วนใหญ่เป็นหน่วยความจำไม่ลบเลือนแต่อาจยอมให้ผู้พัฒนาระบบลบข้อมูลและเขียนข้อมูลลงไปใหม่ได้ การลบข้อมูลนี้ต้องทำด้วยกรรมวิธีพิเศษ เช่น ใช้แสงอุลตราไวโลเล็ตฉายลงบนผิวซิลิกอน หน่วยความจำประเภทนี้มักจะมีช่องกระจกใสสำหรับฉายแสงขณะลบ และขณะใช้งานจะมีแผ่นกระดาษทึบปิดทับไว้ เรียกหน่วยความจำประเภทนี้ว่า อีพร็อม (Erasable Programmable Read Only Memory : EPROM)

edit @ 23 Feb 2011 09:04:20 by Monster Mafia

แรมรุ่นใหม่

posted on 23 Feb 2011 08:45 by monster-mafia
 แรมรุ่นใหม่

...ราคารวมยอดแล้วคงประมาณ 350,000.- ตอนนี้ขาดแค่ 349,900.- บาทเท่านั้นเองขอรับ

"Samsung ออกมาเผยโฉม RAM ขนาด 32 GB DDR3 แต่ยังคงสำหรับ Server ก่อน เห็นบอกว่าต่อไปก็จะมีสำหรับ PC และ Notebook   ถ้าได้บอร์ดที่ไม่จำกัดจำนวน RAM และเป็น 8-socket Nehalem-EX ที่มีช่องใส่ RAM 16 ช่องต่อหนึ่ง Socket มาลงให้เต็ม (16x8x32 = 4TB) แล้วได้ CPU แบบ 16 Quad Core ออกมาด้วย 
คิงส์ตัน เปิดตัวแรมรุ่นใหม่ล่าสุด 

เมื่อเร็วๆ นี้ คิงส์ตัน ผู้นำด้านการพัฒนาเทคโนโลยีสำหรัผลิตภัณฑ์หน่วยความจำระดับโลก เปิดตัวหน่วยความจำใหม่ตระกูล DDR2 แบบ FB-DIMMs 800MHz (fully-buffered dual-inline memory modules)

ทั้งนี้ หน่วยความจำดังกล่าว ถูกออกแบบสำหรับระบบคอมพิวเตอร์ที่ใช้ชิปเซ็ต Seaburg S5400 ของอินเทล โดยนับเป็นการเปิดตัวครั้งแรกพร้อมกับโมดูลหน่วยความจำแบบแวลู แรม ระดับมาตรฐานของอุตสาหกรรม โดยหน่วยความจำ Kingston 800MHz FB-DIMMs ล่าสุด มีจำหน่ายแล้ววขนาดความจุตั้งแต่ 512MB จนถึง 4GB
 
 



สำหรับเทคโนโลยี Nano Thermal Dissipation นั้นจะเป็นการประยุกต์การใช้ซิลิกอนที่มีความเล็กระดับนาโนเพื่อเพิ่มการ ระบายความร้อน ซึ่ง Kingmax ก็เป็นเจ้าแรกของโลกที่มีการใช้เทคโนโลยีนี้ สำหรับคุณสมบัติและรายละเอียดของแรมตัวนี้ดูต่อได้ข้างล่างเลยน่อ

Features of KINGMAX Long-DIMM DDRIII 2400 Dual-Channel:

    * Support Intel P55 Chipset Adopting Nano Thermal Dissipation Technology
    * ASIC chip embedded for anti-counterfeiting purpose
    * Lead-free production process
    * TinyBGA technology adopted: with advantages as compact size, well heat dissipation and low EM interference
    * 100% product compatibility and stability
    * High data transfer performance for overclocking enthusiasts and hardcore gamers

Specification of KINGMAX Long-DIMM DDRIII 2400 Dual-Channel:

    * 240-pin DDRIII 2400MHz
    * CAS Latency: 10
    * Bandwidth: 19.2GB/sec
    * Voltage: 1.5~1.8v
    * Capacity: 4GB (2GB*2)
    * Worldwide lifetime warranty
2. หน่วยความจำที่เขียนหรืออ่านข้อมูลได้
           การเขียนหรืออ่านจะเลือกที่ตำแหน่งใดก็ได้ เราเรียกหน่วยความจำประเภทนี้ว่า แรม (Random Access Memory: RAM) แรมเป็น หน่วยความจำแบบลบเลือนได้
          เป็นหน่วยความจำหลักที่สามารถนำโปรแกรม และข้อมูลจากอุปกรณ์ภายนอก หรือหน่วยความจำรองมาบรรจุไว้ หน่วยความจำแรมนี้ต่างจากรอมที่สามารถเก็บข้อมูลได้ เฉพาะเวลาที่มีไฟฟ้าเลี้ยงวงจรอยู่เท่านั้น หากปิดเครื่องข้อมูล จะหายได้หมดสิ้น เมื่อเปิดเครื่องใหม่อีกครั้ง จึงจะนำข้อมูลหรือโปรแกรมมาเขียนใหม่อีกครั้ง
          หน่วยความจำแรมมีขนาดแตกต่างกันออกไป หน่วยความจำชนิดนี้บางครั้งเรียกว่า read write memory ซึ่งหมายความว่า ทั้งอ่านและบันทึกได้ หน่วยความจำเป็บแรมที่ใช้อยู่สามารถแบ่งได้ 2 ประเภท คือ
1. ไดนามิกแรมหรือดีแรม (Dynamic RAM : DRAM)
          DRAM จะทำการเก็บข้อมูลในตัวเก็บประจุ ( Capacitor ) ซึ่งจำเป็นจะต้องมีการ refresh เพื่อ เก็บข้อมูลให้
คงอยู่ โดยการ refresh นี้ ทำให้เกิดการหน่วงเวลาขึ้นในการเข้าถึงข้อมูล และก็เนื่อง จากที่มันต้อง refresh ตัวเองอยู่ตลอดเวลานี้เอง จึงเป็นเหตุให้ได้ชื่อว่า Dynamic RAM ปัจจุบันนี้แทบจะหมดไปจากตลาดแล้ว
          ปัจจุบันมีการคิดค้นดีแรมขึ้นใช้งานอยู่หลายชนิด เทคโนโลยีในการพัฒนาหน่วยความจำประเภทแรม เป็นความพยายามลดเวลา ในส่วนที่สองของการอ่านข้อมูล นั่นก็คือช่วงวงรอบการทำงาน ดังนี้         
           Fast Page Mode DRAM (FPM DRAM)
               FPM นั้น ก็เหมือนๆกับ DRAM เพียงแต่ว่า มันลดช่วงการหน่วงเวลาในขณะเข้าถึงข้อมูลลง ทำให้มัน มีความเร็วในการเข้าถึงข้อมูลสูงกว่า DRAM ปกติ โดยที่สัญญาณนาฬิการปกติในการเข้าถึงข้อมูล จะเป็น 6-3-3-3 ( Latency เริ่มต้นที่ 3 clock พร้อมด้วย 3 clock สำหรับการเข้าถึง page ) และสำหรับระบบแบบ 32 bit จะมีอัตราการส่งถ่ายข้อมูลสูงสุด 100 MB ต่อวินาที ส่วนระบบแบบ 64 bit จะมีอัตราการส่งถ่ายข้อมูลสูงสุดที่ 200 MB ต่อวินาที เช่นกันครับ ปัจจุบันนี้ RAM ชนิดนี้ก็แทบจะหมดไปจากตลาดแล้ว แต่ก็ยังคงเห็นได้บ้างและมักจะมีราคา ที่ค่อนข้างแพงเมื่อเทียบกับ RAM รุ่นใหม่ๆ เนื่องจากที่ว่า ปริมาณที่มีในท้องตลาดมีน้อยมาก ทั้งๆที่ ยังมีคนที่ต้องการใช้ RAM ชนิดนี้อยู่
           Extended-Data Output (EDO)
               DRAM หรืออีกชื่อหนึ่งก็คือ Hyper-Page Mode DRAM ซึ่งพัฒนาขึ้นอีกระดับหนึ่ง โดยการที่มันจะอ้างอิงตำแหน่ง ที่อ่านข้อมูลจากครั้งก่อนไว้ด้วย ปกติแล้วการดึงข้อมูลจาก
RAM ณ ตำแหน่งใดๆ มักจะดึงข้อมูล ณ ตำแหน่งที่อยู่ใกล้ๆ จากการดึงก่อนหน้านี้ เพราะงั้น ถ้ามีการอ้างอิง ณ ตำแหน่งเก่าไว้ก่อน ก็จะทำให้ เสียเวลาในการเข้าถึงตำแหน่งน้อยลง และอีกทั้งมันยังลดช่วงเวลาของ CAS latency ลงด้วย และด้วยความสามารถนี้ ทำให้การเข้าถึงข้อมูลดีขึ้นกว่าเดิม กว่า 40% เลยทีเดียว และมีความ สามารถโดยรวมสูงกว่า FPM กว่า 15%
              EDO จะทำงานได้ดีที่ 66MHz ด้วย Timming 5-2-2-2 และ ก็ยังทำงานได้ดีเช่นกันถึงแม้จะใช้งานที่ 83MHz ด้วย Timming นี้ และหากว่า chip EDO นี้ มีความเร็วที่สูงมากพอ ( มากกว่า 50ns ) มันก็สามารถใช้งานได้ ณ 100 MHz ที่ Timming 6-3-3-3 ได้อย่างสบาย อัตราการส่งถ่ายข้อมูลสูงสุดของ DRAM ชนิดนี้อยู่ที่ 264M ต่อวินาที
              EDO RAM เองก็เช่นกัน ณ ปัจจุบันนี้ ก็หาได้ค่อนข้างยากแล้วในท้องตลาด เนื่องจากบริษัทผู้ผลิต หยุดผลิต หรือ ผลิตในปริมาณน้อยลงแล้ว เพราะหันไปผลิต RAM รุ่นใหม่ๆ แทน ทำให้ราคาเมื่อเทียบเป็น เมกต่อเมก กับ SDRAM จึงแพงกว่า

Burst EDO (BEDO) DRAM
               BEDO ได้เพิ่มความสามารถขึ้นมาจาก EDO เดิม คือ Burst Mode โดยหลังจากที่มันได้ address ที่ต้องการ address แรกแล้ว มันก็จะทำการ generate อีก 3 address ขึ้นทันที ภายใน 1 สัญญาณนาฬิกา ดังนั้นจึงตัดช่วงเวลาในการรับ address ต่อไป เพราะฉะนั้น Timming ของมันจึงเป็น 5-1-1-1 ณ 66 MHz
               BEDO ไม่เป็นที่แพร่หลาย และได้รับความนิยมเพียงระยะเวลาสั้นๆ เนื่องมาจากว่าทาง Intel ตัดสินใจใช้ SDRAM แทน EDO และไม่ได้ใช้ BEDO เป็นส่วนประกอบในการพัฒนา chipset ของตน ทำให้บริษัทผู้ผลิตต่างๆ หันมาพัฒนา SDRAM กันแทน
           Synchronous DRAM (SDRAM)
               SDRAM นี้ จะต่างจาก DRAM เดิม ตรงที่มันจะทำงานสอดคล้องกับสัญญาณนาฬิกา สำหรับ DRAM เดิมจะทราบตำแหน่งที่จะอ่าน ก็ต่อเมื่อเกิดทั้ง RAS และ CAS ขึ้น แล้วจึงทำการ ไปอ่านข้อมูล โดยมีช่วงเวลาในการ
เข้าถึงข้อมูล ตามที่เราๆมักจะได้เห็นบน chip ของตัว RAM เลย เช่น -50 , -60, -80 โดย -50 หมายถึง ช่วงเวลา
เข้าถึง ใช้เวลา 50 นาโนวินาทีเป็นต้น แต่ว่า SDRAM จะใช้สัญญาณนาฬิกาเป็นตัวกำหนดการทำงาน โดยจะใช้ความถี่
ของสัญญาณเป็นตัวระบุ SDRAM จะทำงานตามสัญญาณนาฬิกาขาขึ้น เพื่อรอรับตำแหน่งที่ต้องการให้มันอ่าน
แล้วจากนั้น มันก็จะไปค้นหาให้ และให้ผลลัพธ์ออกมา หลังจากได้รับตำแหน่งแล้ว เท่ากับ ค่า CAS เช่น CAS 2 ก็คือ หลังจากรับตำแหน่งที่จะอ่านแล้ว มันก็จะให้ผลลัพธ์ออกมา ภายใน 2 ลูกของสัญญาณนาฬิกา
               SDRAM จะมี Timming เป็น 5-1-1-1 ซึ่งแน่นอน มันเร็วพอๆ กันกับ BEDO RAM เลยทีเดียว แต่ว่ามันสามารถ ทำงานได้ ณ 100 MHz หรือ มากกว่า และมีอัตราการส่งถ่ายข้อมูลสูงสุดอยู่ที่ 528 M ต่อวินาที
           DDR SDRAM ( หรือ ที่เรียกกันว่า SDRAM II )
               DDR DRAM นี้ แยกออกมาจาก SDRAM โดยจุดที่ต่างกันหลักๆ ของทั้งสองชนิดนี้คือ DDR SDRAM นี้ สามารถที่จะใช้งานได้ทั้งขาขึ้น และ ขาลง ของสัญญาณนาฬิกา เพื่อส่งถ่ายข้อมูล นั่นก็ทำให้อัตราส่งถ่ายเพิ่มได้ถึงเท่าตัว ซึ่งจะมีอัตราส่งถ่ายข้อมูลสูงสุดถึง 1 G ต่อวินาทีเลยทีเดียว
           Rambus DRAM (RDRAM)
               ชื่อของ RAMBUS เป็นเครื่องหมายการค้าของบริษัท RAMBUS Inc. ซึ่งตั้งขึ้นมาตั้งแต่ยุค 80 แล้ว เพราะฉะนั้น ชื่อนี้ ก็ไม่ใช่ชื่อที่ใหม่อะไรนัก โดยปัจจุบันได้เอาหลักการของ RAMBUS มาพัฒนาใหม่ โดยการลด pin, รวม static buffer, และ ทำการปรับแต่งทาง interface ใหม่ DRAM ชนิดนี้ จะสามารถทำงานได้ทั้งขอบขาขึ้นและลง ของสัญญาณนาฬิกา และ เพียงช่องสัญญาณเดียว ของหน่วยความจำแบบ RAMBUS นี้ มี Performance มากกว่าเป็น
3 เท่า จาก SDRAM 100MHz แล้ว และ เพียงแค่ช่องสัญญาณเดียวนี้ก็มีอัตราการส่งถ่ายข้อมูลสูงสุดถึง 1.6 G ต่อวินาที               ถึงแม้ว่าเวลาในการเข้าถึงข้อมูลแบบสุ่มของRAMชนิดนี้จะช้า แต่การเข้าถึงข้อมูลแบบต่อเนื่องจะเร็วมากๆ ซึ่งหากว่า RDRAM นี้มีการพัฒนา Interface และ มี PCB ที่ดีๆ แล้วละก็ รวมถึง Controller ของ Interface ให้สามารถใช้งานมันได้ถึง 2 ช่องสัญญาณแล้วหล่ะก็ มันจะมีอัตราส่งถ่ายข้อมูลเพิ่มเป็น 3.2 G ต่อวินาทีและหากว่า
สามารถใช้งานได้ถึง 4 ช่องสัญญาณ ก็จะสามารถเพิ่มไปถึง 6.4 G ต่อวินาที มหาศาลเลย
2. Static Random Access Memory (SRAM)

              จะต่างจาก DRAM ตรงที่ว่า DRAM จะต้องทำการ refresh ข้อมูลอยู่ตลอดเวลา แต่ในขณะที่ SRAM จะเก็บข้อมูลนั้นๆ ไว้ และจะไม่ทำการ refresh โดยอัตโนมัติ ซึ่งมันจะทำการ refresh ก็ต่อเมื่อ สั่งให้มัน refresh เท่านั้น ซึ่งข้อดีของมัน ก็คือความเร็ว ซึ่งเร็วกว่า DRAM ปกติมาก แต่ก็ด้วยราคาที่สูงกว่ามาก จึงเป็นข้อด้อยของมันเช่นกัน